Supply chain risk analysis with mean-variance models: a technical review
Pioneered by Nobel laureate Harry Markowitz in the 1950s, the mean-variance (MV) formulation is a fundamental theory for risk management in finance. Over the past decades, there is a growing popularity of applying this ground breaking theory in analyzing stochastic supply chain management problems....
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2016-05, Vol.240 (2), p.489-507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pioneered by Nobel laureate Harry Markowitz in the 1950s, the mean-variance (MV) formulation is a fundamental theory for risk management in finance. Over the past decades, there is a growing popularity of applying this ground breaking theory in analyzing stochastic supply chain management problems. Nowadays, there is no doubt that the mean-variance (MV) theory is a well-proven approach for conducting risk analysis in stochastic supply chain operational models. In view of the growing importance of MV approach in supply chain management, we review a selection of related papers in the literature that focus on MV analytical models. By classifying the literature into three major areas, namely, single-echelon problems, multi-echelon supply chain problems, and supply chain problems with information updating, we derive insights into the current state of knowledge in each area and identify some associated challenges with a discussion of some specific models. We also suggest future research directions on topics such as information asymmetry, supply networks, and boundedly rational agents, etc. In conclusion, this paper provides up-to-date information which helps both academicians and practitioners to better understand the development of MV models for supply chain risk analysis. |
---|---|
ISSN: | 0254-5330 1572-9338 |
DOI: | 10.1007/s10479-013-1386-4 |