The Maximum Number of Faces of the Minkowski Sum of Two Convex Polytopes
We derive tight bounds for the maximum number of k -faces, 0 ≤ k ≤ d - 1 , of the Minkowski sum, P 1 + P 2 , of two d -dimensional convex polytopes P 1 and P 2 , as a function of the number of vertices of the polytopes. For even dimensions d ≥ 2 , the maximum values are attained when P 1 and P 2 are...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2016-06, Vol.55 (4), p.748-785 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive tight bounds for the maximum number of
k
-faces,
0
≤
k
≤
d
-
1
, of the Minkowski sum,
P
1
+
P
2
, of two
d
-dimensional convex polytopes
P
1
and
P
2
, as a function of the number of vertices of the polytopes. For even dimensions
d
≥
2
, the maximum values are attained when
P
1
and
P
2
are cyclic
d
-polytopes with disjoint vertex sets. For odd dimensions
d
≥
3
, the maximum values are attained when
P
1
and
P
2
are
⌊
d
2
⌋
-neighborly
d
-polytopes, whose vertex sets are chosen appropriately from two distinct
d
-dimensional moment-like curves. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-015-9726-6 |