Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-β peptide
Abstract Protein misfolding to amyloid aggregates is the hallmark for neurodegenerative disease. While much attention has been paid to screen natural proteases that can degrade amyloid-β peptides (Aβ), it is difficult to apply them in the clinics with the intractable problem of immunogenicity in liv...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2016-08, Vol.98, p.92-102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Protein misfolding to amyloid aggregates is the hallmark for neurodegenerative disease. While much attention has been paid to screen natural proteases that can degrade amyloid-β peptides (Aβ), it is difficult to apply them in the clinics with the intractable problem of immunogenicity in living organisms. Herein, we rationally designed an artificial nanozyme, Ceria/Polyoxometalates hybrid (CeONP@POMs) with both proteolytic and superoxide dismutase (SOD) activities. Our results indicated that CeONP@POMs could efficiently degrade Aβ aggregates and reduce intracellular reactive oxygen species (ROS). More importantly, CeONP@POMD could not only promote PC12 cell proliferation and can cross blood−brain barrier (BBB), but also inhibit Aβ-induced BV2 microglial cell activation which was demonstrated by immunoluorescence assay and flow cytometry measurements. In vivo studies further indicated that CeONP@POMD as nanozyme possessed good biocompatibility, evidenced by a detailed study of their biodistribution, body weight change, and in vivo toxicology. Therefore, our results pave the way for design of multifunctional artificial nanozyme for treatment of neurotoxicity of amyloid-β peptide. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2016.05.005 |