A refined one-dimensional rotordynamics model with three-dimensional capabilities

This paper evaluates the vibration characteristics of various rotating structures. The present methodology exploits the one-dimensional Carrera Unified Formulation (1D CUF), which enables one to go beyond the kinematic assumptions of classical beam theories. According to the component-wise (CW) appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2016-03, Vol.366, p.343-356
Hauptverfasser: Carrera, E., Filippi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper evaluates the vibration characteristics of various rotating structures. The present methodology exploits the one-dimensional Carrera Unified Formulation (1D CUF), which enables one to go beyond the kinematic assumptions of classical beam theories. According to the component-wise (CW) approach, Lagrange-like polynomial expansions (LE) are here adopted to develop the refined displacement theories. The LE elements make it possible to model each structural component of the rotor with an arbitrary degree of accuracy using either different displacement theories or localized mesh refinements. Hamilton׳s Principle is used to derive the governing equations, which are solved by the Finite Element Method. The CUF one-dimensional theory includes all the effects due to rotation, namely the Coriolis term, spin softening and geometrical stiffening. The numerical simulations have been performed considering a thin ring, discs and bladed-deformable shafts. The effects of the number and the position of the blades on the dynamic stability of the rotor have been evaluated. The results have been compared, when possible, with the 2D and 3D solutions that are available in the literature. CUF models appear very practical to investigate the dynamics of complex rotating structures since they provide 2D and quasi-3D results, while preserving the computational effectiveness of one-dimensional solutions.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2015.12.036