Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method

•We applied HPM for solving time-fractional PDEs with proportional delay.•Convergence theorem of method and maximum truncation error are given.•Some examples are solved by HPM. In this paper, homotopy perturbation method (HPM) is applied to solve fractional partial differential equations (PDEs) with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2016-07, Vol.40 (13-14), p.6639-6649
Hauptverfasser: Sakar, Mehmet Giyas, Uludag, Fatih, Erdogan, Fevzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6649
container_issue 13-14
container_start_page 6639
container_title Applied mathematical modelling
container_volume 40
creator Sakar, Mehmet Giyas
Uludag, Fatih
Erdogan, Fevzi
description •We applied HPM for solving time-fractional PDEs with proportional delay.•Convergence theorem of method and maximum truncation error are given.•Some examples are solved by HPM. In this paper, homotopy perturbation method (HPM) is applied to solve fractional partial differential equations (PDEs) with proportional delay in t and shrinking in x. The method do not require linearization or small perturbation. The fractional derivatives are taken in the Caputo sense. The present method performs extremely well in terms of efficiency and simplicity. Numerical results for different particular cases of α are presented graphically.
doi_str_mv 10.1016/j.apm.2016.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825471544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X16300695</els_id><sourcerecordid>1825471544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-79aa258fb435f5653dbc6fce56fda139da8f5a68f83a8c90ca865dbb4b854dc43</originalsourceid><addsrcrecordid>eNp9UD1PwzAQzQASpfAD2DyyJDiJnTpiQqV8SBUwgMRmOfZZdZXEwXZA-fc4tDPT3b177-nuJclVjrMc59XNPhNDlxWxzXCRYUxPkgUu8SqtMfk8S8693-OIxmmRdC9jB85I0SJv2zEY2yOrUTAdpNoJOQNx19u-NT0Ih97uNx79mLBDg7ODdUeCglZMHjUT2tnOBjtMaAAXRteIP88Ows6qi-RUi9bD5bEuk4-Hzfv6Kd2-Pj6v77apJKQM6aoWoqBMN6Skmla0VI2stARaaSXyslaCaSoqplkpmKyxFKyiqmlIwyhRkpTL5PrgG2_8GsEH3hkvoW1FD3b0PGcFJauckpmaH6jSWe8daD440wk38RzzOU6-5zFOPsfJccFjcFFze9BA_OHbgONeGuglKONABq6s-Uf9C2Ojgyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825471544</pqid></control><display><type>article</type><title>Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sakar, Mehmet Giyas ; Uludag, Fatih ; Erdogan, Fevzi</creator><creatorcontrib>Sakar, Mehmet Giyas ; Uludag, Fatih ; Erdogan, Fevzi</creatorcontrib><description>•We applied HPM for solving time-fractional PDEs with proportional delay.•Convergence theorem of method and maximum truncation error are given.•Some examples are solved by HPM. In this paper, homotopy perturbation method (HPM) is applied to solve fractional partial differential equations (PDEs) with proportional delay in t and shrinking in x. The method do not require linearization or small perturbation. The fractional derivatives are taken in the Caputo sense. The present method performs extremely well in terms of efficiency and simplicity. Numerical results for different particular cases of α are presented graphically.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.02.005</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Caputo derivative ; Delay ; Derivatives ; Fractional partial differential equation ; Homotopy perturbation method ; Linearization ; Mathematical models ; Nonlinearity ; Partial differential equations ; Perturbation methods ; Proportional delay</subject><ispartof>Applied mathematical modelling, 2016-07, Vol.40 (13-14), p.6639-6649</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-79aa258fb435f5653dbc6fce56fda139da8f5a68f83a8c90ca865dbb4b854dc43</citedby><cites>FETCH-LOGICAL-c443t-79aa258fb435f5653dbc6fce56fda139da8f5a68f83a8c90ca865dbb4b854dc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X16300695$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sakar, Mehmet Giyas</creatorcontrib><creatorcontrib>Uludag, Fatih</creatorcontrib><creatorcontrib>Erdogan, Fevzi</creatorcontrib><title>Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method</title><title>Applied mathematical modelling</title><description>•We applied HPM for solving time-fractional PDEs with proportional delay.•Convergence theorem of method and maximum truncation error are given.•Some examples are solved by HPM. In this paper, homotopy perturbation method (HPM) is applied to solve fractional partial differential equations (PDEs) with proportional delay in t and shrinking in x. The method do not require linearization or small perturbation. The fractional derivatives are taken in the Caputo sense. The present method performs extremely well in terms of efficiency and simplicity. Numerical results for different particular cases of α are presented graphically.</description><subject>Caputo derivative</subject><subject>Delay</subject><subject>Derivatives</subject><subject>Fractional partial differential equation</subject><subject>Homotopy perturbation method</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Perturbation methods</subject><subject>Proportional delay</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQzQASpfAD2DyyJDiJnTpiQqV8SBUwgMRmOfZZdZXEwXZA-fc4tDPT3b177-nuJclVjrMc59XNPhNDlxWxzXCRYUxPkgUu8SqtMfk8S8693-OIxmmRdC9jB85I0SJv2zEY2yOrUTAdpNoJOQNx19u-NT0Ih97uNx79mLBDg7ODdUeCglZMHjUT2tnOBjtMaAAXRteIP88Ows6qi-RUi9bD5bEuk4-Hzfv6Kd2-Pj6v77apJKQM6aoWoqBMN6Skmla0VI2stARaaSXyslaCaSoqplkpmKyxFKyiqmlIwyhRkpTL5PrgG2_8GsEH3hkvoW1FD3b0PGcFJauckpmaH6jSWe8daD440wk38RzzOU6-5zFOPsfJccFjcFFze9BA_OHbgONeGuglKONABq6s-Uf9C2Ojgyo</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Sakar, Mehmet Giyas</creator><creator>Uludag, Fatih</creator><creator>Erdogan, Fevzi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201607</creationdate><title>Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method</title><author>Sakar, Mehmet Giyas ; Uludag, Fatih ; Erdogan, Fevzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-79aa258fb435f5653dbc6fce56fda139da8f5a68f83a8c90ca865dbb4b854dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Caputo derivative</topic><topic>Delay</topic><topic>Derivatives</topic><topic>Fractional partial differential equation</topic><topic>Homotopy perturbation method</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Perturbation methods</topic><topic>Proportional delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakar, Mehmet Giyas</creatorcontrib><creatorcontrib>Uludag, Fatih</creatorcontrib><creatorcontrib>Erdogan, Fevzi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakar, Mehmet Giyas</au><au>Uludag, Fatih</au><au>Erdogan, Fevzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method</atitle><jtitle>Applied mathematical modelling</jtitle><date>2016-07</date><risdate>2016</risdate><volume>40</volume><issue>13-14</issue><spage>6639</spage><epage>6649</epage><pages>6639-6649</pages><issn>0307-904X</issn><abstract>•We applied HPM for solving time-fractional PDEs with proportional delay.•Convergence theorem of method and maximum truncation error are given.•Some examples are solved by HPM. In this paper, homotopy perturbation method (HPM) is applied to solve fractional partial differential equations (PDEs) with proportional delay in t and shrinking in x. The method do not require linearization or small perturbation. The fractional derivatives are taken in the Caputo sense. The present method performs extremely well in terms of efficiency and simplicity. Numerical results for different particular cases of α are presented graphically.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2016.02.005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2016-07, Vol.40 (13-14), p.6639-6649
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_1825471544
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Caputo derivative
Delay
Derivatives
Fractional partial differential equation
Homotopy perturbation method
Linearization
Mathematical models
Nonlinearity
Partial differential equations
Perturbation methods
Proportional delay
title Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20time-fractional%20nonlinear%20PDEs%20with%20proportional%20delays%20by%20homotopy%20perturbation%20method&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Sakar,%20Mehmet%20Giyas&rft.date=2016-07&rft.volume=40&rft.issue=13-14&rft.spage=6639&rft.epage=6649&rft.pages=6639-6649&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.02.005&rft_dat=%3Cproquest_cross%3E1825471544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825471544&rft_id=info:pmid/&rft_els_id=S0307904X16300695&rfr_iscdi=true