Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method

•We applied HPM for solving time-fractional PDEs with proportional delay.•Convergence theorem of method and maximum truncation error are given.•Some examples are solved by HPM. In this paper, homotopy perturbation method (HPM) is applied to solve fractional partial differential equations (PDEs) with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2016-07, Vol.40 (13-14), p.6639-6649
Hauptverfasser: Sakar, Mehmet Giyas, Uludag, Fatih, Erdogan, Fevzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We applied HPM for solving time-fractional PDEs with proportional delay.•Convergence theorem of method and maximum truncation error are given.•Some examples are solved by HPM. In this paper, homotopy perturbation method (HPM) is applied to solve fractional partial differential equations (PDEs) with proportional delay in t and shrinking in x. The method do not require linearization or small perturbation. The fractional derivatives are taken in the Caputo sense. The present method performs extremely well in terms of efficiency and simplicity. Numerical results for different particular cases of α are presented graphically.
ISSN:0307-904X
DOI:10.1016/j.apm.2016.02.005