Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods
The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol–gel, microwave assisted sol–gel and hydrothermal methods for preparing tin oxide...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2016-04, Vol.487, p.47-52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol–gel, microwave assisted sol–gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6–12nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M–H curve of all the samples. But the sol–gel derived sample shows the higher values of saturation magnetization (Ms) and remanence (Mr) than other two samples. This study reveals that the sol–gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2016.01.026 |