Bayesian analysis to detect abrupt changes in extreme hydrological processes

•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2016-07, Vol.538, p.63-70
Hauptverfasser: Jo, Seongil, Kim, Gwangsu, Jeon, Jong-June
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue
container_start_page 63
container_title Journal of hydrology (Amsterdam)
container_volume 538
creator Jo, Seongil
Kim, Gwangsu
Jeon, Jong-June
description •Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.
doi_str_mv 10.1016/j.jhydrol.2016.03.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825468784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169416301792</els_id><sourcerecordid>1825468784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwCUheskkYx4kfKwSIl1SJDawt15m0jtKk2Cmif4-rdA-zmRnpzr2aQ8g1g5wBE7dt3q73dRi6vEhrDjwHUZ2QGVNSZ4UEeUpmAEWRMaHLc3IRYwupOC9nZPFg9xi97antbbePPtJxoDWO6EZql2G3Halb236Fkfqe4s8YcIN0yhtW3tmObsPgMEaMl-SssV3Eq2Ofk8_np4_H12zx_vL2eL_ILNdqzHgjGJRWlKpaSl0oEFIi6KoUTDvLGq4ZtxXoZqldoUoUFbomDZJVCi1YPic3k29K_tphHM3GR4ddZ3scdtEwVSQzJVX5DykoCapKNOakmqQuDDEGbMw2-I0Ne8PAHECb1hxBmwNoA9wk0OnubrrD9PK3x2Ci89g7rH1IFE09-D8cfgH0u4kG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808708503</pqid></control><display><type>article</type><title>Bayesian analysis to detect abrupt changes in extreme hydrological processes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jo, Seongil ; Kim, Gwangsu ; Jeon, Jong-June</creator><creatorcontrib>Jo, Seongil ; Kim, Gwangsu ; Jeon, Jong-June</creatorcontrib><description>•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2016.03.065</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annual precipitation ; Bayesian analysis ; Bayesian change-point analysis ; Generalized extreme-value distribution ; Hydrology ; Mathematical models ; Non-stationarity ; Peninsulas ; Risk ; Stations ; Transformations</subject><ispartof>Journal of hydrology (Amsterdam), 2016-07, Vol.538, p.63-70</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</citedby><cites>FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169416301792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jo, Seongil</creatorcontrib><creatorcontrib>Kim, Gwangsu</creatorcontrib><creatorcontrib>Jeon, Jong-June</creatorcontrib><title>Bayesian analysis to detect abrupt changes in extreme hydrological processes</title><title>Journal of hydrology (Amsterdam)</title><description>•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.</description><subject>Annual precipitation</subject><subject>Bayesian analysis</subject><subject>Bayesian change-point analysis</subject><subject>Generalized extreme-value distribution</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Non-stationarity</subject><subject>Peninsulas</subject><subject>Risk</subject><subject>Stations</subject><subject>Transformations</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwCUheskkYx4kfKwSIl1SJDawt15m0jtKk2Cmif4-rdA-zmRnpzr2aQ8g1g5wBE7dt3q73dRi6vEhrDjwHUZ2QGVNSZ4UEeUpmAEWRMaHLc3IRYwupOC9nZPFg9xi97antbbePPtJxoDWO6EZql2G3Halb236Fkfqe4s8YcIN0yhtW3tmObsPgMEaMl-SssV3Eq2Ofk8_np4_H12zx_vL2eL_ILNdqzHgjGJRWlKpaSl0oEFIi6KoUTDvLGq4ZtxXoZqldoUoUFbomDZJVCi1YPic3k29K_tphHM3GR4ddZ3scdtEwVSQzJVX5DykoCapKNOakmqQuDDEGbMw2-I0Ne8PAHECb1hxBmwNoA9wk0OnubrrD9PK3x2Ci89g7rH1IFE09-D8cfgH0u4kG</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Jo, Seongil</creator><creator>Kim, Gwangsu</creator><creator>Jeon, Jong-June</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201607</creationdate><title>Bayesian analysis to detect abrupt changes in extreme hydrological processes</title><author>Jo, Seongil ; Kim, Gwangsu ; Jeon, Jong-June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annual precipitation</topic><topic>Bayesian analysis</topic><topic>Bayesian change-point analysis</topic><topic>Generalized extreme-value distribution</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Non-stationarity</topic><topic>Peninsulas</topic><topic>Risk</topic><topic>Stations</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Seongil</creatorcontrib><creatorcontrib>Kim, Gwangsu</creatorcontrib><creatorcontrib>Jeon, Jong-June</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Seongil</au><au>Kim, Gwangsu</au><au>Jeon, Jong-June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis to detect abrupt changes in extreme hydrological processes</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2016-07</date><risdate>2016</risdate><volume>538</volume><spage>63</spage><epage>70</epage><pages>63-70</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2016.03.065</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2016-07, Vol.538, p.63-70
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_1825468784
source ScienceDirect Journals (5 years ago - present)
subjects Annual precipitation
Bayesian analysis
Bayesian change-point analysis
Generalized extreme-value distribution
Hydrology
Mathematical models
Non-stationarity
Peninsulas
Risk
Stations
Transformations
title Bayesian analysis to detect abrupt changes in extreme hydrological processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20to%20detect%20abrupt%20changes%20in%20extreme%20hydrological%20processes&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Jo,%20Seongil&rft.date=2016-07&rft.volume=538&rft.spage=63&rft.epage=70&rft.pages=63-70&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2016.03.065&rft_dat=%3Cproquest_cross%3E1825468784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808708503&rft_id=info:pmid/&rft_els_id=S0022169416301792&rfr_iscdi=true