Bayesian analysis to detect abrupt changes in extreme hydrological processes
•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian c...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2016-07, Vol.538, p.63-70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 538 |
creator | Jo, Seongil Kim, Gwangsu Jeon, Jong-June |
description | •Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points.
In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation. |
doi_str_mv | 10.1016/j.jhydrol.2016.03.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825468784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169416301792</els_id><sourcerecordid>1825468784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwCUheskkYx4kfKwSIl1SJDawt15m0jtKk2Cmif4-rdA-zmRnpzr2aQ8g1g5wBE7dt3q73dRi6vEhrDjwHUZ2QGVNSZ4UEeUpmAEWRMaHLc3IRYwupOC9nZPFg9xi97antbbePPtJxoDWO6EZql2G3Halb236Fkfqe4s8YcIN0yhtW3tmObsPgMEaMl-SssV3Eq2Ofk8_np4_H12zx_vL2eL_ILNdqzHgjGJRWlKpaSl0oEFIi6KoUTDvLGq4ZtxXoZqldoUoUFbomDZJVCi1YPic3k29K_tphHM3GR4ddZ3scdtEwVSQzJVX5DykoCapKNOakmqQuDDEGbMw2-I0Ne8PAHECb1hxBmwNoA9wk0OnubrrD9PK3x2Ci89g7rH1IFE09-D8cfgH0u4kG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808708503</pqid></control><display><type>article</type><title>Bayesian analysis to detect abrupt changes in extreme hydrological processes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jo, Seongil ; Kim, Gwangsu ; Jeon, Jong-June</creator><creatorcontrib>Jo, Seongil ; Kim, Gwangsu ; Jeon, Jong-June</creatorcontrib><description>•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points.
In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2016.03.065</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annual precipitation ; Bayesian analysis ; Bayesian change-point analysis ; Generalized extreme-value distribution ; Hydrology ; Mathematical models ; Non-stationarity ; Peninsulas ; Risk ; Stations ; Transformations</subject><ispartof>Journal of hydrology (Amsterdam), 2016-07, Vol.538, p.63-70</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</citedby><cites>FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169416301792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jo, Seongil</creatorcontrib><creatorcontrib>Kim, Gwangsu</creatorcontrib><creatorcontrib>Jeon, Jong-June</creatorcontrib><title>Bayesian analysis to detect abrupt changes in extreme hydrological processes</title><title>Journal of hydrology (Amsterdam)</title><description>•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points.
In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.</description><subject>Annual precipitation</subject><subject>Bayesian analysis</subject><subject>Bayesian change-point analysis</subject><subject>Generalized extreme-value distribution</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Non-stationarity</subject><subject>Peninsulas</subject><subject>Risk</subject><subject>Stations</subject><subject>Transformations</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwCUheskkYx4kfKwSIl1SJDawt15m0jtKk2Cmif4-rdA-zmRnpzr2aQ8g1g5wBE7dt3q73dRi6vEhrDjwHUZ2QGVNSZ4UEeUpmAEWRMaHLc3IRYwupOC9nZPFg9xi97antbbePPtJxoDWO6EZql2G3Halb236Fkfqe4s8YcIN0yhtW3tmObsPgMEaMl-SssV3Eq2Ofk8_np4_H12zx_vL2eL_ILNdqzHgjGJRWlKpaSl0oEFIi6KoUTDvLGq4ZtxXoZqldoUoUFbomDZJVCi1YPic3k29K_tphHM3GR4ddZ3scdtEwVSQzJVX5DykoCapKNOakmqQuDDEGbMw2-I0Ne8PAHECb1hxBmwNoA9wk0OnubrrD9PK3x2Ci89g7rH1IFE09-D8cfgH0u4kG</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Jo, Seongil</creator><creator>Kim, Gwangsu</creator><creator>Jeon, Jong-June</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201607</creationdate><title>Bayesian analysis to detect abrupt changes in extreme hydrological processes</title><author>Jo, Seongil ; Kim, Gwangsu ; Jeon, Jong-June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-3f6104a6485b79280677e0954619ca1f3913a509fb9c284e65ecf2847158ea0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annual precipitation</topic><topic>Bayesian analysis</topic><topic>Bayesian change-point analysis</topic><topic>Generalized extreme-value distribution</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Non-stationarity</topic><topic>Peninsulas</topic><topic>Risk</topic><topic>Stations</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Seongil</creatorcontrib><creatorcontrib>Kim, Gwangsu</creatorcontrib><creatorcontrib>Jeon, Jong-June</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Seongil</au><au>Kim, Gwangsu</au><au>Jeon, Jong-June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis to detect abrupt changes in extreme hydrological processes</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2016-07</date><risdate>2016</risdate><volume>538</volume><spage>63</spage><epage>70</epage><pages>63-70</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points.
In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2016.03.065</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2016-07, Vol.538, p.63-70 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825468784 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Annual precipitation Bayesian analysis Bayesian change-point analysis Generalized extreme-value distribution Hydrology Mathematical models Non-stationarity Peninsulas Risk Stations Transformations |
title | Bayesian analysis to detect abrupt changes in extreme hydrological processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20to%20detect%20abrupt%20changes%20in%20extreme%20hydrological%20processes&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Jo,%20Seongil&rft.date=2016-07&rft.volume=538&rft.spage=63&rft.epage=70&rft.pages=63-70&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2016.03.065&rft_dat=%3Cproquest_cross%3E1825468784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808708503&rft_id=info:pmid/&rft_els_id=S0022169416301792&rfr_iscdi=true |