Bayesian analysis to detect abrupt changes in extreme hydrological processes

•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2016-07, Vol.538, p.63-70
Hauptverfasser: Jo, Seongil, Kim, Gwangsu, Jeon, Jong-June
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Define the regression model for change point analysis for extreme data.•Construct a selection prior distribution.•Obtain posterior samples of the regression model regularized by priors.•Analyzing the posterior mean for detecting change points. In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.
ISSN:0022-1694
1879-2707
DOI:10.1016/j.jhydrol.2016.03.065