Numerical method to compute optical conductivity based on pump-probe simulations

A numerical method to calculate optical conductivity based on a pump-probe setup is presented. Its validity and limits are tested and demonstrated via concrete numerical simulations on the half-filled one-dimensional extended Hubbard model both in and out of equilibrium. By employing either a stepli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-05, Vol.93 (19), Article 195144
Hauptverfasser: Shao, Can, Tohyama, Takami, Luo, Hong-Gang, Lu, Hantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical method to calculate optical conductivity based on a pump-probe setup is presented. Its validity and limits are tested and demonstrated via concrete numerical simulations on the half-filled one-dimensional extended Hubbard model both in and out of equilibrium. By employing either a steplike or a Gaussian-like probing vector potential, it is found that in nonequilibrium, the method in the narrow-probe-pulse limit can be identified with variant types of linear-response theory, which, in equilibrium, produce identical results. The observation reveals the underlying probe-pulse dependence of the optical conductivity calculations in nonequilibrium, which may have applications in the theoretical analysis of ultrafast spectroscopy measurements.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.93.195144