Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air

Multilayer Cr–Zr/Cr/Cr–N coatings for protection of zirconium alloys from the high-temperature oxidation in air have been obtained by the vacuum-arc evaporation technique with application of filters for plasma cleaning from macroparticles. The effect of the coatings on the corrosion resistance of zi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2015-10, Vol.465, p.400-406
Hauptverfasser: Kuprin, А.S., Belous, V.А., Voyevodin, V.N., Bryk, V.V., Vasilenko, R.L., Ovcharenko, V.D., Reshetnyak, E.N., Tolmachova, G.N., V'yugov, P.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multilayer Cr–Zr/Cr/Cr–N coatings for protection of zirconium alloys from the high-temperature oxidation in air have been obtained by the vacuum-arc evaporation technique with application of filters for plasma cleaning from macroparticles. The effect of the coatings on the corrosion resistance of zirconium alloys at test temperatures between 660 and 1100 °C for 3600 s has been investigated. The thickness, structure, phase composition, mechanical properties of the coatings and oxide layers before and after oxidation tests were examined by scanning electron microscopy, X-ray diffraction analysis and nanoindentation technique. It is shown that the hard multilayer coating effectively protects zirconium from the oxidation in air for 1 h at test temperatures. As a result of the oxidation in the coating the CrO and Cr2O3 oxides are formed which reduce the oxygen penetration through the coating. At maximum test temperature of 1100 °C the oxide layer thickness in the coating is about 5 μm. The tube shape remains unchanged independent of alloy type. It has been found that uncoated zirconium oxidizes rapidly throughout the temperature range under study. At 1100 °C a porous monoclinic ZrO2 oxide layer of ≥120 μm is formed that leads to the deformation of the samples, cracking and spalling of the oxide layer.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2015.06.016