Real-time rear obstacle detection using reliable disparity for driver assistance
Hightlights•Utilizing three features such as disparity, super pixel segments and pixel-wise gradient.•Computing the reliability of disparity from super pixel segments and pixel-wise gradient.•Developing voting map to reduce time complexity of initial obstacle region.•Superior performance with errone...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2016-09, Vol.56, p.186-196 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hightlights•Utilizing three features such as disparity, super pixel segments and pixel-wise gradient.•Computing the reliability of disparity from super pixel segments and pixel-wise gradient.•Developing voting map to reduce time complexity of initial obstacle region.•Superior performance with erroneous disparity information and in complex environments.
A vision based real-time rear obstacle detection system is one of the most essential technologies, which can be used in many applications such as a parking assistance systems and intelligent vehicles. Although disparity is a useful feature for detecting obstacles, estimating a correct disparity map is a hard problem due to the matching ambiguity and noise sensitivity, especially in homogeneous regions. To overcome these problems, we leverage reliable disparities only for obstacle detection. A reliability factor is introduced to measure an inhomogeneity of the regions quantitatively. It is computed at each superpixel to consider the noise sensitivity of pixel-wise gradients and to assign similar reliability value within a same object. It includes two major components: firstly, In a feature extraction and combining stage, we extract three features from stereo images such as disparity, superpixel segments and pixel-wise gradient and compute the reliability of disparity from superpixel segments and the pixel-wise gradient. Secondly, In an obstacle detection stage, a disparity feature with reliability votes for localizing obstacles and dominant candidates in voting map are selected as initial obstacle region. The initial obstacle regions are expanded into their neighbor superpixels based on CIELAB color similarity and distance similarity between superpixels. Experimental results show satisfactory performance under various real parking environments. Its detection rate is at least 4% higher than those of other existing methods, and its false detection rate is more than 10% lower and thus, can be used for parking assistance system. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2016.02.049 |