Towards a uniform and large-scale deposition of MoS sub(2) nanosheets via sulfurization of ultra-thin Mo-based solid films
Large-scale integration of MoS sub(2) in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS sub(2) layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited moly...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2016-04, Vol.27 (17), p.175703-175712 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175712 |
---|---|
container_issue | 17 |
container_start_page | 175703 |
container_title | Nanotechnology |
container_volume | 27 |
creator | Vangelista, Silvia Cinquanta, Eugenio Martella, Christian Alia, Mario Longo, Massimo Lamperti, Alessio Mantovan, Roberto Basset, Francesco Basso Pezzoli, Fabio Molle, Alessandro |
description | Large-scale integration of MoS sub(2) in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS sub(2) layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS sub(2) films onto SiO sub(2)/Si substrates with a tunable thickness and cm super(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS sub(2) layers is dictated by the deposition temperature and thickness. In particular, the MoS sub(2) structural disorder observed at low temperature ( |
doi_str_mv | 10.1088/0957-4484/27/17/175703 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825464960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825464960</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18254649603</originalsourceid><addsrcrecordid>eNqVjk1LAzEURYMoOGr_grxlXcRJZjIfXYvixpXdl9cmaSOZpOYlCv31jqDuhQsHLufCZexWinspxrEWq27gSo2qboZafqcbRHvGKtn2kvddM56z6k-6ZFdEb0JIOTayYqd1_MSkCRBKcDamCTBo8Jj2htMOvQFtjpFcdjFAtPASX4HKdtncQcAQ6WBMJvhwOLfeluRO-KsWnxPyfHBhXvEtktFA0TsN1vmJbtiFRU9m8cNrtnx6XD8882OK78VQ3kyOdsZ7DCYW2syHO9WrVS_af6hfDKFZhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825464960</pqid></control><display><type>article</type><title>Towards a uniform and large-scale deposition of MoS sub(2) nanosheets via sulfurization of ultra-thin Mo-based solid films</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vangelista, Silvia ; Cinquanta, Eugenio ; Martella, Christian ; Alia, Mario ; Longo, Massimo ; Lamperti, Alessio ; Mantovan, Roberto ; Basset, Francesco Basso ; Pezzoli, Fabio ; Molle, Alessandro</creator><creatorcontrib>Vangelista, Silvia ; Cinquanta, Eugenio ; Martella, Christian ; Alia, Mario ; Longo, Massimo ; Lamperti, Alessio ; Mantovan, Roberto ; Basset, Francesco Basso ; Pezzoli, Fabio ; Molle, Alessandro</creatorcontrib><description>Large-scale integration of MoS sub(2) in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS sub(2) layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS sub(2) films onto SiO sub(2)/Si substrates with a tunable thickness and cm super(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS sub(2) layers is dictated by the deposition temperature and thickness. In particular, the MoS sub(2) structural disorder observed at low temperature (<750 degree C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 degree C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS sub(2) nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS sub(2), potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/27/17/175703</identifier><language>eng</language><subject>Deposition ; Electronic devices ; Molybdenum ; Molybdenum disulfide ; Nanostructure ; Sulfur ; Sulfurization ; Thickness</subject><ispartof>Nanotechnology, 2016-04, Vol.27 (17), p.175703-175712</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vangelista, Silvia</creatorcontrib><creatorcontrib>Cinquanta, Eugenio</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Alia, Mario</creatorcontrib><creatorcontrib>Longo, Massimo</creatorcontrib><creatorcontrib>Lamperti, Alessio</creatorcontrib><creatorcontrib>Mantovan, Roberto</creatorcontrib><creatorcontrib>Basset, Francesco Basso</creatorcontrib><creatorcontrib>Pezzoli, Fabio</creatorcontrib><creatorcontrib>Molle, Alessandro</creatorcontrib><title>Towards a uniform and large-scale deposition of MoS sub(2) nanosheets via sulfurization of ultra-thin Mo-based solid films</title><title>Nanotechnology</title><description>Large-scale integration of MoS sub(2) in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS sub(2) layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS sub(2) films onto SiO sub(2)/Si substrates with a tunable thickness and cm super(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS sub(2) layers is dictated by the deposition temperature and thickness. In particular, the MoS sub(2) structural disorder observed at low temperature (<750 degree C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 degree C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS sub(2) nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS sub(2), potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.</description><subject>Deposition</subject><subject>Electronic devices</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanostructure</subject><subject>Sulfur</subject><subject>Sulfurization</subject><subject>Thickness</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVjk1LAzEURYMoOGr_grxlXcRJZjIfXYvixpXdl9cmaSOZpOYlCv31jqDuhQsHLufCZexWinspxrEWq27gSo2qboZafqcbRHvGKtn2kvddM56z6k-6ZFdEb0JIOTayYqd1_MSkCRBKcDamCTBo8Jj2htMOvQFtjpFcdjFAtPASX4HKdtncQcAQ6WBMJvhwOLfeluRO-KsWnxPyfHBhXvEtktFA0TsN1vmJbtiFRU9m8cNrtnx6XD8882OK78VQ3kyOdsZ7DCYW2syHO9WrVS_af6hfDKFZhg</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Vangelista, Silvia</creator><creator>Cinquanta, Eugenio</creator><creator>Martella, Christian</creator><creator>Alia, Mario</creator><creator>Longo, Massimo</creator><creator>Lamperti, Alessio</creator><creator>Mantovan, Roberto</creator><creator>Basset, Francesco Basso</creator><creator>Pezzoli, Fabio</creator><creator>Molle, Alessandro</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>Towards a uniform and large-scale deposition of MoS sub(2) nanosheets via sulfurization of ultra-thin Mo-based solid films</title><author>Vangelista, Silvia ; Cinquanta, Eugenio ; Martella, Christian ; Alia, Mario ; Longo, Massimo ; Lamperti, Alessio ; Mantovan, Roberto ; Basset, Francesco Basso ; Pezzoli, Fabio ; Molle, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18254649603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Deposition</topic><topic>Electronic devices</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanostructure</topic><topic>Sulfur</topic><topic>Sulfurization</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vangelista, Silvia</creatorcontrib><creatorcontrib>Cinquanta, Eugenio</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Alia, Mario</creatorcontrib><creatorcontrib>Longo, Massimo</creatorcontrib><creatorcontrib>Lamperti, Alessio</creatorcontrib><creatorcontrib>Mantovan, Roberto</creatorcontrib><creatorcontrib>Basset, Francesco Basso</creatorcontrib><creatorcontrib>Pezzoli, Fabio</creatorcontrib><creatorcontrib>Molle, Alessandro</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vangelista, Silvia</au><au>Cinquanta, Eugenio</au><au>Martella, Christian</au><au>Alia, Mario</au><au>Longo, Massimo</au><au>Lamperti, Alessio</au><au>Mantovan, Roberto</au><au>Basset, Francesco Basso</au><au>Pezzoli, Fabio</au><au>Molle, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a uniform and large-scale deposition of MoS sub(2) nanosheets via sulfurization of ultra-thin Mo-based solid films</atitle><jtitle>Nanotechnology</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>27</volume><issue>17</issue><spage>175703</spage><epage>175712</epage><pages>175703-175712</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Large-scale integration of MoS sub(2) in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS sub(2) layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS sub(2) films onto SiO sub(2)/Si substrates with a tunable thickness and cm super(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS sub(2) layers is dictated by the deposition temperature and thickness. In particular, the MoS sub(2) structural disorder observed at low temperature (<750 degree C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 degree C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS sub(2) nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS sub(2), potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.</abstract><doi>10.1088/0957-4484/27/17/175703</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2016-04, Vol.27 (17), p.175703-175712 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825464960 |
source | Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Deposition Electronic devices Molybdenum Molybdenum disulfide Nanostructure Sulfur Sulfurization Thickness |
title | Towards a uniform and large-scale deposition of MoS sub(2) nanosheets via sulfurization of ultra-thin Mo-based solid films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20uniform%20and%20large-scale%20deposition%20of%20MoS%20sub(2)%20nanosheets%20via%20sulfurization%20of%20ultra-thin%20Mo-based%20solid%20films&rft.jtitle=Nanotechnology&rft.au=Vangelista,%20Silvia&rft.date=2016-04-01&rft.volume=27&rft.issue=17&rft.spage=175703&rft.epage=175712&rft.pages=175703-175712&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/27/17/175703&rft_dat=%3Cproquest%3E1825464960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825464960&rft_id=info:pmid/&rfr_iscdi=true |