Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

The hypervapotron(HV),as an enhanced heat transfer technique,will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels.W-Cu brazing technology has been developed at SWIP(Southwestern Institute of Physics),and one W/CuCrZr/316 LN component of 450...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma science & technology 2015-09, Vol.17 (9), p.792-796
1. Verfasser: 陈蕾 刘翔 练友运 才来中
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hypervapotron(HV),as an enhanced heat transfer technique,will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels.W-Cu brazing technology has been developed at SWIP(Southwestern Institute of Physics),and one W/CuCrZr/316 LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux(HHF) tests.Before that a relevant analysis was carried out to optimize the structure of divertor component elements.ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations.Commercial code FE-SAFE was adopted to compute the fatigue life of the component.The tile size,thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor(ITER) loading conditions were simulated.One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP,where ITER-like flat-tile divertor components are adopted.This optimized design is expected to supply valuable data for HL-2M tokamak.
ISSN:1009-0630
DOI:10.1088/1009-0630/17/9/12