Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation
Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25- P) with the assistance of the deposition-precipitation procedure. The influences of the plasma reduction time and calcination...
Gespeichert in:
Veröffentlicht in: | Plasma science & technology 2016-05, Vol.18 (5), p.544-548 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25- P) with the assistance of the deposition-precipitation procedure. The influences of the plasma reduction time and calcination on the performance of the Au/P25-P catalysts were investigated. CO oxidation was performed to investigate the catalytic activity of the Au/P25 catalysts. The results show that DBD cold plasma for the fabrication of Au/P25-P catalysts is a fast process, and Au/P25-P (4 min) exhibited the highest CO oxidation activity due to the complete reduction of Au compounds and less consumption of oxygen vacancies. In order to form more oxygen vacancies active species, Au/P25-P was calcined to obtain Au/P25-PC catalysts. Interestingly, Au/P25- PC exhibited the highest activity for CO oxidation among the Au/P25 samples. The results of transmission electron microscopy (TEM) indicated that the smaller size and high distribution of Au nanoparticles are the mean reasons for a high performance of Au/P25-PC. Atmospheric- pressure DBD cold plasma was proved to be of great efficiency in preparing high performance supported Au catalysts. |
---|---|
ISSN: | 1009-0630 |
DOI: | 10.1088/1009-0630/18/5/17 |