Tolerance-Maps for Line-Profiles Formed by Intersecting Kinematically Transformed Primitive Tolerance-Map Elements

For the purposes of automating the assignment of tolerances during design, a math model, called the Tolerance-Map (T-Map), has been produced for most of the tolerance classes that are used by designers. Each T-Map is a hypothetical point-space that represents the geometric variations of a feature in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computing and information science in engineering 2016-06, Vol.16 (2)
Hauptverfasser: He, Y, Davidson, J. K, Kalish, N. J, Shah, Jami J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the purposes of automating the assignment of tolerances during design, a math model, called the Tolerance-Map (T-Map), has been produced for most of the tolerance classes that are used by designers. Each T-Map is a hypothetical point-space that represents the geometric variations of a feature in its tolerance-zone. Of the six tolerance classes defined in the ASME/ANSI/ISO Standards, profile tolerances have received the least attention for representation in computer models. The objective of this paper is to provide a comprehensive treatment of T-Map construction for any line-profile by using primitive T-Map elements and their Boolean intersection. The method requires (a) decomposing a profile into segments, each of constant curvature; (b) creating a solid-model T-Map primitive for each in a common global reference frame; and (c) combining these by Boolean intersection to generate the T-Map for a complete line-profile of any shape. Freeform portions of a profile are modeled as a series of closely spaced points and subsequent formation of short circular arc-segments, each formed from the circle that osculates to three adjacent points.
ISSN:1530-9827
1944-7078
DOI:10.1115/1.4033236