Tolerance-Maps for Line-Profiles Formed by Intersecting Kinematically Transformed Primitive Tolerance-Map Elements
For the purposes of automating the assignment of tolerances during design, a math model, called the Tolerance-Map (T-Map), has been produced for most of the tolerance classes that are used by designers. Each T-Map is a hypothetical point-space that represents the geometric variations of a feature in...
Gespeichert in:
Veröffentlicht in: | Journal of computing and information science in engineering 2016-06, Vol.16 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the purposes of automating the assignment of tolerances during design, a math model, called the Tolerance-Map (T-Map), has been produced for most of the tolerance classes that are used by designers. Each T-Map is a hypothetical point-space that represents the geometric variations of a feature in its tolerance-zone. Of the six tolerance classes defined in the ASME/ANSI/ISO Standards, profile tolerances have received the least attention for representation in computer models. The objective of this paper is to provide a comprehensive treatment of T-Map construction for any line-profile by using primitive T-Map elements and their Boolean intersection. The method requires (a) decomposing a profile into segments, each of constant curvature; (b) creating a solid-model T-Map primitive for each in a common global reference frame; and (c) combining these by Boolean intersection to generate the T-Map for a complete line-profile of any shape. Freeform portions of a profile are modeled as a series of closely spaced points and subsequent formation of short circular arc-segments, each formed from the circle that osculates to three adjacent points. |
---|---|
ISSN: | 1530-9827 1944-7078 |
DOI: | 10.1115/1.4033236 |