Pseudo‐Anosov stretch factors and homology of mapping tori

We consider the pseudo‐Anosov elements of the mapping class group of a surface of genus g that fix a rank k subgroup of the first homology of the surface. We show that the smallest entropy among these is comparable to (k+1)/g. This interpolates between results of Penner and of Farb and the second an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2016-06, Vol.93 (3), p.664-682
Hauptverfasser: Agol, Ian, Leininger, Christopher J., Margalit, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the pseudo‐Anosov elements of the mapping class group of a surface of genus g that fix a rank k subgroup of the first homology of the surface. We show that the smallest entropy among these is comparable to (k+1)/g. This interpolates between results of Penner and of Farb and the second and third authors, who treated the cases of k=0 and k=2g, respectively, and answers a question of Ellenberg. We also show that the number of conjugacy classes of pseudo‐Anosov mapping classes as above grows (as a function of g) like a polynomial of degree k.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms/jdw008