Pseudo‐Anosov stretch factors and homology of mapping tori
We consider the pseudo‐Anosov elements of the mapping class group of a surface of genus g that fix a rank k subgroup of the first homology of the surface. We show that the smallest entropy among these is comparable to (k+1)/g. This interpolates between results of Penner and of Farb and the second an...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2016-06, Vol.93 (3), p.664-682 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the pseudo‐Anosov elements of the mapping class group of a surface of genus g that fix a rank k subgroup of the first homology of the surface. We show that the smallest entropy among these is comparable to (k+1)/g. This interpolates between results of Penner and of Farb and the second and third authors, who treated the cases of k=0 and k=2g, respectively, and answers a question of Ellenberg. We also show that the number of conjugacy classes of pseudo‐Anosov mapping classes as above grows (as a function of g) like a polynomial of degree k. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms/jdw008 |