Scaled up low-mass star formation in massive star-forming cores in the G333 giant molecular cloud

Three bright molecular line sources in G333 have recently been shown to exhibit signatures of infall. We describe a molecular line radiative transfer (RT) modelling process which is required to extract the infall signature from Mopra and Nanten2 data. The observed line profiles differ greatly betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-06, Vol.458 (4), p.3429-3442
Hauptverfasser: Wiles, B., Lo, N., Redman, M. P., Cunningham, M. R., Jones, P. A., Burton, M. G., Bronfman, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three bright molecular line sources in G333 have recently been shown to exhibit signatures of infall. We describe a molecular line radiative transfer (RT) modelling process which is required to extract the infall signature from Mopra and Nanten2 data. The observed line profiles differ greatly between individual sources but are reproduced well by variations upon a common unified model where the outflow viewing angle is the most significant difference between the sources. The models and data together suggest that the observed properties of the high-mass star-forming regions such as infall, turbulence and mass are consistent with scaled-up versions of the low-mass case with turbulent velocities that are supersonic and an order of magnitude larger than those found in low-mass star-forming regions. Using detailed RT modelling, we show that the G333 cores are essentially undergoing a scaled-up version of low-mass star formation. This is an extension of earlier work in that the degree of infall and the chemical abundances are constrained by the RT modelling in a way that is not practical with a standard analysis of observational data. We also find high velocity infall and high infall mass rates, possibly suggesting accelerated collapse due to external pressure. Molecular depletion due to freeze-out on to dust grains in central regions of the cores is suggested by low molecular abundances of several species. Strong evidence for a local enhancement of 13C-bearing species towards the outflow cloud cores is discussed, consistent with the presence of shocks caused by the supersonic motions within them.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw525