Process development and intensification for enhanced production of Bacillus lipopeptides

The growing interest in Bacillus lipopeptides for high-value applications has driven process design, development and optimization for enhanced lipopeptide production. Traditional optimization approaches have been directed towards improving the overall titres by modification of media components and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology & genetic engineering reviews 2015-07, Vol.31 (1-2), p.46-68
Hauptverfasser: Rangarajan, Vivek, Clarke, Kim G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growing interest in Bacillus lipopeptides for high-value applications has driven process design, development and optimization for enhanced lipopeptide production. Traditional optimization approaches have been directed towards improving the overall titres by modification of media components and environmental parameters, almost exclusively in submerged cultures. Carbon and nitrogen sources, trace elements and oxygen availability have all been demonstrated to exhibit significant influences on lipopeptide yield, productivity and selectivity. This insight into process-linked kinetics, especially selectivity, has led to the introduction of novel process intensification and integration strategies which further promote process efficiency, and which include foam fractionation, inverse fluidization, rotating disc contacting and microfiltration with recycle. These strategies have not only transformed the production capabilities, but have also successfully integrated upstream production with downstream purification through cell retention and in situ product removal. This review analyses and critically discusses the impact of process conditions and process optimization strategies for improving lipopeptide production kinetics, specifically highlighting the emerging trend of process intensification and integration strategies and further, proposes a heuristic route to enhance lipopeptide production.
ISSN:0264-8725
0367-4231
2046-5556
2324-0741
DOI:10.1080/02648725.2016.1166335