Effects of Strain Rate and Amplitude Variations on Solder Joint Fatigue Life in Isothermal Cycling

The behavior of lead-free solder alloys under realistic service conditions is still not well understood. Life prediction of solder joints relies on conducting accelerated tests and extrapolating results to service conditions. This can be very misleading without proper constitutive relations and with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic packaging 2016-06, Vol.138 (2)
Hauptverfasser: Hamasha, Sa'd, Borgesen, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The behavior of lead-free solder alloys under realistic service conditions is still not well understood. Life prediction of solder joints relies on conducting accelerated tests and extrapolating results to service conditions. This can be very misleading without proper constitutive relations and without understanding the effects of cycling parameter variations common under realistic service conditions. It has been shown that the fatigue life depends on the inelastic work accumulation, independently of cycling-induced material property variations, which explains the breakdown of damage accumulation rules and allows the development of a modified Miner's rule. This paper discusses the interacting effects of strain rate and amplitude variations on solder joint fatigue life. Individual SnAgCu solder joints with two different Ag contents (SAC305 and SAC105) were tested in low cycling shear fatigue under single and varying amplitudes with different strain rates. Such a shear fatigue experiment allows the measurement of work accumulation and the evolution of solder deformation properties during cycling. The results showed that cycling with a lower strain rate at fixed amplitude causes more damage per cycle. Alternating between mild amplitude at a high strain rate and harsh amplitude at a low strain rate leads to ongoing increases in the rate of damage at the mild amplitude and thus relatively rapid failure. In comparing SAC305 with SAC105, the effect of strain rate on both alloys is almost the same, and SAC305 is still more fatigue resistant than SAC105 in varying amplitude cycling with any strain rate.
ISSN:1043-7398
1528-9044
DOI:10.1115/1.4032881