Analytic Models of a Thin Glass–Polymer Laminate and Development of a Rational Engineering Design Methodology
Analytic models that describe the mechanical behavior of thin glass–polymer laminate structures have been investigated experimentally and via finite-element analysis (FEA). Standard laminate effective thickness models were shown to be applicable to a wide range of glass/interlayer thickness ratios a...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2014-12, Vol.81 (12) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analytic models that describe the mechanical behavior of thin glass–polymer laminate structures have been investigated experimentally and via finite-element analysis (FEA). Standard laminate effective thickness models were shown to be applicable to a wide range of glass/interlayer thickness ratios and to a wide range of interlayer shear moduli, covering most currently existing glass laminates. In addition, an analytic comparison of the effective thickness model with the traditional composite beam model clarified the applicable limits of the former model in the range of the interlayer/glass thickness ratio and interlayer shear modulus. These modeling approaches enable a rational engineering design approach for structurally efficient, lightweight, and safe glazing laminates. |
---|---|
ISSN: | 0021-8936 1528-9036 |
DOI: | 10.1115/1.4028902 |