Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor
In order to accurately predict the incident critical heat flux(ICHF,the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor,the exact knowledge of its peaking factors(f_p) under one-sided heating conditions with different design parameters is a key issue....
Gespeichert in:
Veröffentlicht in: | Plasma science & technology 2015-09, Vol.17 (9), p.802-808 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to accurately predict the incident critical heat flux(ICHF,the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor,the exact knowledge of its peaking factors(f_p) under one-sided heating conditions with different design parameters is a key issue.In this paper,the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients(HTC)of the cooling wall to be functions of the local wall temperature,so as to obtain f_p.The reliability of the calculation method is validated by an experimental example result,with the maximum error of 2.1% only.The effects of geometric and flow parameters on the f_p of a water-cooled W/Cu monoblock are investigated.Within the scope of this study,it is shown that the f_p increases with increasing dimensionless W/Cu monoblock width and armour thickness(the shortest distance between the heated surface and Cu layer),and the maximum increases are 43.8% and 22.4% respectively.The dimensionless W/Cu monoblock height and Cu thickness have little effect on f_p.The increase of Reynolds number and Jakob number causes the increase of f_p,and the maximum increases are 6.8% and 9.6% respectively.Based on the calculated results,an empirical correlation on peaking factor is obtained via regression.These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. |
---|---|
ISSN: | 1009-0630 |
DOI: | 10.1088/1009-0630/17/9/14 |