Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer

A new ultra-low specific on-resistance (Ron,sp) vertical double diffusion metal-oxide-semiconductor field-effect tran- sistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2016-04, Vol.25 (4), p.450-455
1. Verfasser: 马达 罗小蓉 魏杰 谭桥 周坤 吴俊峰
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new ultra-low specific on-resistance (Ron,sp) vertical double diffusion metal-oxide-semiconductor field-effect tran- sistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the Ron,sp but also makes the Ron,sp almost independent of the n-pillar doping concentration (Am). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the Nn, and further reduces the Ron,sp. Especially, the two PNjunctions within the trench gate support a high gate--drain voltage in the off-state and on-state, re- spectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the Ron,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV).
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/25/4/048502