Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials

In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2015-12, Vol.77, p.223-231
Hauptverfasser: Zhou, Long-Qiao, Meleshko, Sergey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a recently developed approach of the group analysis method is applied to a system of integro-differential equations describing the stress relaxation behavior of one-dimensional viscoelastic materials. An admitted Lie group is defined by solving determining equations of the system. Using an optimal system of one-dimensional subalgebras, all invariant solutions are obtained. •Applying the group analysis method, mathematical modeling is given.•Complete group classification of a system of integro-differential equations is presented.•Invariant solutions of various models are obtained.
ISSN:0020-7462
1878-5638
DOI:10.1016/j.ijnonlinmec.2015.08.008