Extreme blazars as counterparts of IceCube astrophysical neutrinos
We explore the correlation of γ-ray emitting blazars with IceCube neutrinos by using three very recently completed, and independently built, catalogues and the latest neutrino lists. We introduce a new observable, namely the number of neutrino events with at least one γ-ray counterpart, N ν. In all...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2016-04, Vol.457 (4), p.3582-3592 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the correlation of γ-ray emitting blazars with IceCube neutrinos by using three very recently completed, and independently built, catalogues and the latest neutrino lists. We introduce a new observable, namely the number of neutrino events with at least one γ-ray counterpart, N
ν. In all three catalogues we consistently observe a positive fluctuation of N
ν with respect to the mean random expectation at a significance level of 0.4–1.3 per cent. This applies only to extreme blazars, namely strong, very high energy γ-ray sources of the high energy peaked type, and implies a model-independent fraction of the current IceCube signal ∼10–20 per cent. An investigation of the hybrid photon – neutrino spectral energy distributions of the most likely candidates reveals a set of ≈5 such sources, which could be linked to the corresponding IceCube neutrinos. Other types of blazars, when testable, give null correlation results. Although we could not perform a similar correlation study for Galactic sources, we have also identified two (further) strong Galactic γ-ray sources as most probable counterparts of IceCube neutrinos through their hybrid spectral energy distributions. We have reasons to believe that our blazar results are not constrained by the γ-ray samples but by the neutrino statistics, which means that the detection of more astrophysical neutrinos could turn this first hint into a discovery. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stw228 |