Exact solutions of nonlinear Schrödinger equation by using symbolic computation
The (G′/G,1/G)‐expansion method and (1/G′)‐expansion method are interesting approaches to find new and more general exact solutions to the nonlinear evolution equations. In this paper, these methods are applied to construct new exact travelling wave solutions of nonlinear Schrödinger equation. The t...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2016-05, Vol.39 (8), p.2093-2099 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The (G′/G,1/G)‐expansion method and (1/G′)‐expansion method are interesting approaches to find new and more general exact solutions to the nonlinear evolution equations. In this paper, these methods are applied to construct new exact travelling wave solutions of nonlinear Schrödinger equation. The travelling wave solutions are expressed by hyperbolic functions, trigonometric functions and rational functions. It is shown that the proposed methods provide a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3626 |