Raman spectroscopic investigations of natural jennite from Maroldsweisach, Bavaria, Germany
A full‐range pattern (100–3700 cm−1) analysis of natural jennite was performed for the first time by Raman spectroscopy, applying a polarized laser at a wavelength of 532 nm. A prominent structural feature of jennite is the preferred orientation of Si‐tetrahedron and Ca‐octahedron chains parallel [0...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2016-05, Vol.47 (5), p.602-606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A full‐range pattern (100–3700 cm−1) analysis of natural jennite was performed for the first time by Raman spectroscopy, applying a polarized laser at a wavelength of 532 nm. A prominent structural feature of jennite is the preferred orientation of Si‐tetrahedron and Ca‐octahedron chains parallel [010]. The latter ones are additionally coupled to H2O molecules and OH groups. This arrangement leads to a strong dependence on orientation for the intensity ratios of mainly three different regions in the Raman spectra: 180–210, 950–1050 and 3100–3650 cm−1. These sections can be assigned to Ca–O lattice vibrations, Q2 Si–tetrahedron stretching and O–H vibrations of H2O molecules and Ca–OH structures, respectively. Copyright © 2015 John Wiley & Sons, Ltd.
A full‐range pattern (100–3700 cm−1) analysis of natural jennite was performed for the first time by Raman spectroscopy. A prominent structural feature of jennite is the preferred orientation of Si‐tetrahedron and Ca‐octahedron chains parallel [010]. The latter ones are additionally coupled to H2O molecules and OH groups. This arrangement leads to a strong dependence on orientation of distinct regions in the Raman spectra, discussed herein. |
---|---|
ISSN: | 0377-0486 1097-4555 |
DOI: | 10.1002/jrs.4865 |