A SCUBA-2 survey of FeLoBAL QSOs. Are FeLoBALs in a ‘transition phase’ between ULIRGs and QSOs?

It is thought that a class of broad absorption line (BAL) QSOs, characterized by Fe absorption features in their UV spectra (called ‘FeLoBALs’), could mark a transition stage between the end of an obscured starburst event and a youthful QSO beginning to shed its dust cocoon, where Fe has been inject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-04, Vol.457 (2), p.1371-1384
Hauptverfasser: Violino, Giulio, Coppin, Kristen E. K., Stevens, Jason A., Farrah, Duncan, Geach, James E., Alexander, Dave M., Hickox, Ryan, Smith, Daniel J. B., Wardlow, Julie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is thought that a class of broad absorption line (BAL) QSOs, characterized by Fe absorption features in their UV spectra (called ‘FeLoBALs’), could mark a transition stage between the end of an obscured starburst event and a youthful QSO beginning to shed its dust cocoon, where Fe has been injected into the interstellar medium by the starburst. To test this hypothesis, we have undertaken deep Submillimetre Common-User Bolometer Array 2 (SCUBA-2) 850 μm observations of a sample of 17 FeLoBAL QSOs with 0.89 ≤ z ≤ 2.78 and −23.31 ≤ M B ≤ −28.50 to directly detect an excess in the thermal emission of the dust which would probe enhanced star formation activity. We find that FeLoBALs are not luminous sources in the sub-mm, none of them are individually detected at 850 μm, nor as a population through stacking (F s = 1.14 ± 0.58 mJy). Statistical and survival analyses reveal that FeLoBALs have sub-mm properties consistent with BAL and non-BAL QSOs with matched redshifts and magnitudes. An Spectral Energy Distribution fitting analysis shows that the far-infrared emission is dominated by active galactic nuclei activity, and a starburst component is required only in 6/17 sources of our sample; moreover the integrated total luminosity of 16/17 sources is L ≥ 1012 L⊙, high enough to classify FeLoBALs as infrared luminous. In conclusion, we do not find any evidence in support of FeLoBAL QSOs being a transition population between an ultraluminous infrared galaxy (ULIRG) and an unobscured QSO; in particular, FeLoBALs are not characterized by a cold starburst which would support this hypothesis.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stv2937