Large-Eddy simulation of the stably-stratified atmospheric boundary layer
Large-Eddy Simulation of stable boundary layers (SBLs) has been considered particularly difficult, indeed perhaps impossible with present computational resources. Here we present a new series of successful simulations of SBLs over uniform, flat terrain, using an approach previously successful for ne...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 1990-10, Vol.53 (1-2), p.117-162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large-Eddy Simulation of stable boundary layers (SBLs) has been considered particularly difficult, indeed perhaps impossible with present computational resources. Here we present a new series of successful simulations of SBLs over uniform, flat terrain, using an approach previously successful for neutral and convective conditions, and showing that essentially the same model can handle all three main dry types of atmospheric boundary layer. We consider both technical requirements for successful and accurate SBL simulations and the observed characteristics of the simulated SBL. We discuss the evolution (in some cases to quasi-steady states) and compare with theory and experimental data. Effects of static-stability on the flow are analyzed using one-point and two-point statistics. Results show the development of a shear-driven SBL, with little sign of distinctively wavelike motions. The flow statistics are found to be consistent with local scaling, and that framework is used to compare with other data and theoretical models. |
---|---|
ISSN: | 0006-8314 1573-1472 |
DOI: | 10.1007/bf00122467 |