Existence of a slow manifold in a model system of equations

A model system of equations proposed by Lorenz and Krishnamurthy is analyzed. The Hartman-Grobman theorem is employed to prove that the equations of the model admit a slow manifold devoid of gravity-wave activity, and the theory of normal forms is used to construct the manifold and to determine when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 1991-04, Vol.48 (7), p.893-901
1. Verfasser: JACOBS, S. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model system of equations proposed by Lorenz and Krishnamurthy is analyzed. The Hartman-Grobman theorem is employed to prove that the equations of the model admit a slow manifold devoid of gravity-wave activity, and the theory of normal forms is used to construct the manifold and to determine when the manifold is stable. The study disproves a conjecture by Lorenz and Krishnamurthy that a slow manifold does not exist for their model.
ISSN:0022-4928
1520-0469
DOI:10.1175/1520-0469(1991)048<0893:eoasmi>2.0.co;2