Mapping the Anthrax Protective Antigen Binding Site on the Lethal and Edema Factors
Entry of anthrax edema factor (EF) and lethal factor (LF) into the cytosol of eukaryotic cells depends on their ability to translocate across the endosomal membrane in the presence of anthrax protective antigen (PA). Here we report attributes of the N-terminal domains of EF and LF (EFN and LFN, resp...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-01, Vol.277 (4), p.3006-3010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Entry of anthrax edema factor (EF) and lethal factor (LF) into the cytosol of eukaryotic cells depends on their ability to translocate across the endosomal membrane in the presence of anthrax protective antigen (PA). Here we report attributes of the N-terminal domains of EF and LF (EFN and LFN, respectively) that are critical for their initial interaction with PA. We found that deletion of the first 36 residues of LFN had no effect on its binding to PA or its ability to be translocated. To map the binding site for PA, we used the three-dimensional structure of LF and sequence similarity between EF and LF to select positions for mutagenesis. We identified seven sites in LFN (Asp-182, Asp-187, Leu-188, Tyr-223, His-229, Leu-235, and Tyr-236) where mutation to Ala produced significant binding defects, with H229A and Y236A almost completely eliminating binding. Homologous mutants of EFN displayed nearly identical defects. Cytotoxicity assays confirmed that the LFN mutations impact intoxication. The seven mutation-sensitive amino acids are clustered on the surface of LF and form a small convoluted patch with both hydrophobic and hydrophilic character. We propose that this patch constitutes the recognition site for PA. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M109997200 |