Microstructural Evaluation of Bi-Ag and Bi-Sb Lead-Free High-Temperature Solder Candidates on Copper Substrate with Multiple Reflow Number

An impetus has been provided towards the development of lead-free solders by worldwide environmental legislation that banned the use of lead in solders due to the lead toxicity.This study focus on Bi-Ag and Bi-Sb solder alloys, in compositions from 1.5 to 5 wt % Ag and Sb. The effects of Ag and Sb a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-06, Vol.564 (Advances in Mechanical and Manufacturing Engineering), p.388-393
Hauptverfasser: Nahavandi, Mahdi, Mohamed Ariff, Azmah Hanim, Baserfalak, F., Ismarrubie, Z.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An impetus has been provided towards the development of lead-free solders by worldwide environmental legislation that banned the use of lead in solders due to the lead toxicity.This study focus on Bi-Ag and Bi-Sb solder alloys, in compositions from 1.5 to 5 wt % Ag and Sb. The effects of Ag and Sb amount, and reflow number on the microstructure and morphology of solder bulk were analysed by optical microscope and scanning electron microscope-energy dispersive X-ray. Based on the results, the grain boundary grooving was observed in all samples except Bi-5Sb in all three reflows. Metallurgical and chemical reaction between interface and solders were found in Bi-5Sb solder alloys in different reflow numbers which lead to appearance of Cu3Sb intermetallic compound layer at the interface. Reflow numbers had a significant effect on the size of Cu-rich phase. Also it was observed that, with increasing reflow number Bi-Cu phase found in Bi-2.5Sb solder dissolves into the solder bulk.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.564.388