Metal-Insulator Transition of c-Axis-Controlled V sub( 2)O sub( 3) Thin Film

We prepared c-axis-controlled V sub(2)O sub(3) thin films by RF magnetron sputtering and proved their metal-insulator transition (MIT) in terms of electronic structure. The lattice constant of the c-axis depends on the film thickness and the lattice mismatch of the substrate and V sub(2)O sub(3). MI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Physical Society of Japan 2015-06, Vol.84 (6), p.1-1
Hauptverfasser: Shimazu, Yuichi, Okumura, Teppei, Tsuchiya, Takashi, Shimada, Atsushi, Tanabe, Kenji, Tokiwa, Kazuyasu, Kobayashi, Masaki, Horiba, Koji, Kumigashira, Hiroshi, Higuchi, Tohru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prepared c-axis-controlled V sub(2)O sub(3) thin films by RF magnetron sputtering and proved their metal-insulator transition (MIT) in terms of electronic structure. The lattice constant of the c-axis depends on the film thickness and the lattice mismatch of the substrate and V sub(2)O sub(3). MIT is observed at a temperature of ~150 K in the V sub(2)O sub(3) thin films with the lattice constants of c = 13.942 and 13.992 A, although the V sub(2)O sub(3) thin film with c = 13.915 A exhibits metallic conductivity without MIT. The electron correlation energy, which corresponds to the energy difference between the lower Hubbard band and the upper Hubbard band, increases with increasing lattice constant of the c-axis. Bandwidths also depend on the lattice constant of the c-axis. The intensity of the a1g orbital around the Fermi level decreases with increasing lattice constant of the c-axis. These results suggest that the electron correlation interaction and bandwidths play important roles in the MIT of c-axis-controlled V sub(2)O sub(3) thin films.
ISSN:0031-9015
1347-4073