Reductive elimination of superoxide: Structure and mechanism of superoxide reductases

Superoxide anion is among the deleterious reactive oxygen species, towards which all organisms have specialized detoxifying enzymes. For quite a long time, superoxide elimination was thought to occur through its dismutation, catalyzed by Fe, Cu, and Mn or, as more recently discovered, by Ni-containi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2010-02, Vol.1804 (2), p.285-297
Hauptverfasser: Pinto, Ana Filipa, Rodrigues, João V., Teixeira, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superoxide anion is among the deleterious reactive oxygen species, towards which all organisms have specialized detoxifying enzymes. For quite a long time, superoxide elimination was thought to occur through its dismutation, catalyzed by Fe, Cu, and Mn or, as more recently discovered, by Ni-containing enzymes. However, during the last decade, a novel type of enzyme was established that eliminates superoxide through its reduction: the superoxide reductases, which are spread among anaerobic and facultative microorganisms, from the three life kingdoms. These enzymes share the same unique catalytic site, an iron ion bound to four histidines and a cysteine that, in its reduced form, reacts with superoxide anion with a diffusion-limited second order rate constant of ∼10 9 M −1 s −1. In this review, the properties of these enzymes will be thoroughly discussed.
ISSN:1570-9639
0006-3002
1878-1454
DOI:10.1016/j.bbapap.2009.10.011