Thyroid Hormones Enhance Mitochondrial Function in Human Epidermis
Since it is unknown whether thyroid hormones (THs) regulate mitochondrial function in human epidermis, we treated organ-cultured human skin, or isolated cultured human epidermal keratinocytes, with triiodothyronine (100 pmol/L) or thyroxine (100 nmol/L). Both THs significantly increased protein expr...
Gespeichert in:
Veröffentlicht in: | Journal of investigative dermatology 2016-10, Vol.136 (10), p.2003-2012 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since it is unknown whether thyroid hormones (THs) regulate mitochondrial function in human epidermis, we treated organ-cultured human skin, or isolated cultured human epidermal keratinocytes, with triiodothyronine (100 pmol/L) or thyroxine (100 nmol/L). Both THs significantly increased protein expression of the mitochondrially encoded cytochrome C oxidase I (MTCO1), complex I activity, and the number of perinuclear mitochondria. Triiodothyronine also increased mitochondrial transcription factor A (TFAM) protein expression, and thyroxine stimulated complex II/IV activity. Increased mitochondrial function can correlate with increased reactive oxygen species production, DNA damage, and accelerated tissue aging. However, THs neither raised reactive oxygen species production or matrix metalloproteinase-1, -2 and -9 activity nor decreased sirtuin1 (Sirt1) immunoreactivity. Instead, triiodothyronine increased sirtuin-1, fibrillin-1, proliferator-activated receptor-gamma 1-alpha (PGC1α), collagen I and III transcription, and thyroxine decreased cyclin-dependent kinase inhibitor 2A (p16ink4) expression in organ-cultured human skin. Moreover, TH treatment increased intracutaneous fibrillin-rich microfibril and collagen III deposition and decreased mammalian target of rapamycin (mTORC1/2) expression ex vivo. This identifies THs as potent endocrine stimulators of mitochondrial function in human epidermis, which down-regulates rather than enhance the expression of skin aging-related biomarkers ex vivo. Therefore, topically applied THs deserve further exploration as candidate agents for treating skin conditions characterized by reduced mitochondrial function. |
---|---|
ISSN: | 0022-202X 1523-1747 |
DOI: | 10.1016/j.jid.2016.05.118 |