Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection

Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2016-09, Vol.72, p.1-11
Hauptverfasser: Pölsterl, Sebastian, Conjeti, Sailesh, Navab, Nassir, Katouzian, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Artificial intelligence in medicine
container_volume 72
creator Pölsterl, Sebastian
Conjeti, Sailesh
Navab, Nassir
Katouzian, Amin
description Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models with built-in feature selection are preferred. • For large sample sizes, feature extraction methods performed comparably.
doi_str_mv 10.1016/j.artmed.2016.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1823456531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365716300653</els_id><sourcerecordid>1823456531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-88f345a6a792d8b76f38a2895ae29115c3e902cb8b31d8218954d102305337d93</originalsourceid><addsrcrecordid>eNqFUk1v1DAUtBAV3Rb-AUI-ciCpPxLb4YBUVaUgVeJQOFte52XXizdebGfV_QX8bZxuy6GXnizrzbzRzDyE3lNSU0LFxaY2MW-hr1n51UTWhDSv0IIqySumBHmNFqTjvOKilafoLKUNIUQ2VLxBp0wK0bSkWaC_d1Pcu73x2IzGH5JLeAgRr91qXfVuC2NyoQw-4TVkiGEFI4Qp4aLrbCH1JpvP-Pp-50N04woPYPIUAcN9jsbmwsUmldXY-EIfTXZ7wDn8xyXw8AB7i04G4xO8e3zP0a-v1z-vvlW3P26-X13eVrZRMldKDbxpjTCyY71aSjFwZZjqWgOso7S1HDrC7FItOe0Vo2XS9JQwTlrOZd_xc_TxuHcXw58JUtZblyx4bx6MaapYERAtpwXaHKE2hpQiDHoX3dbEg6ZEzxXojT5WoOcKNJG6VFBoHx4VpuU8eyI9ZV4AX44AKD73DqJO1sFoS6SxhKH74F5SeL7AejfOffyGA6RNmErSvnjRiWmi7-YzmK-ACk5Iscb_ASUmsDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823456531</pqid></control><display><type>article</type><title>Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pölsterl, Sebastian ; Conjeti, Sailesh ; Navab, Nassir ; Katouzian, Amin</creator><creatorcontrib>Pölsterl, Sebastian ; Conjeti, Sailesh ; Navab, Nassir ; Katouzian, Amin</creatorcontrib><description>Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models with built-in feature selection are preferred. • For large sample sizes, feature extraction methods performed comparably.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2016.07.004</identifier><identifier>PMID: 27664504</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Censoring ; Decision Trees ; Dimensionality reduction ; Electronic Health Records ; Feature extraction ; Feature selection ; Humans ; Internal Medicine ; Medical Informatics ; Other ; Spectral embedding ; Support Vector Machine ; Survival Analysis</subject><ispartof>Artificial intelligence in medicine, 2016-09, Vol.72, p.1-11</ispartof><rights>Elsevier B.V.</rights><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-88f345a6a792d8b76f38a2895ae29115c3e902cb8b31d8218954d102305337d93</citedby><cites>FETCH-LOGICAL-c487t-88f345a6a792d8b76f38a2895ae29115c3e902cb8b31d8218954d102305337d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0933365716300653$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27664504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pölsterl, Sebastian</creatorcontrib><creatorcontrib>Conjeti, Sailesh</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><creatorcontrib>Katouzian, Amin</creatorcontrib><title>Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models with built-in feature selection are preferred. • For large sample sizes, feature extraction methods performed comparably.</description><subject>Algorithms</subject><subject>Censoring</subject><subject>Decision Trees</subject><subject>Dimensionality reduction</subject><subject>Electronic Health Records</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medical Informatics</subject><subject>Other</subject><subject>Spectral embedding</subject><subject>Support Vector Machine</subject><subject>Survival Analysis</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAUtBAV3Rb-AUI-ciCpPxLb4YBUVaUgVeJQOFte52XXizdebGfV_QX8bZxuy6GXnizrzbzRzDyE3lNSU0LFxaY2MW-hr1n51UTWhDSv0IIqySumBHmNFqTjvOKilafoLKUNIUQ2VLxBp0wK0bSkWaC_d1Pcu73x2IzGH5JLeAgRr91qXfVuC2NyoQw-4TVkiGEFI4Qp4aLrbCH1JpvP-Pp-50N04woPYPIUAcN9jsbmwsUmldXY-EIfTXZ7wDn8xyXw8AB7i04G4xO8e3zP0a-v1z-vvlW3P26-X13eVrZRMldKDbxpjTCyY71aSjFwZZjqWgOso7S1HDrC7FItOe0Vo2XS9JQwTlrOZd_xc_TxuHcXw58JUtZblyx4bx6MaapYERAtpwXaHKE2hpQiDHoX3dbEg6ZEzxXojT5WoOcKNJG6VFBoHx4VpuU8eyI9ZV4AX44AKD73DqJO1sFoS6SxhKH74F5SeL7AejfOffyGA6RNmErSvnjRiWmi7-YzmK-ACk5Iscb_ASUmsDM</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Pölsterl, Sebastian</creator><creator>Conjeti, Sailesh</creator><creator>Navab, Nassir</creator><creator>Katouzian, Amin</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160901</creationdate><title>Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection</title><author>Pölsterl, Sebastian ; Conjeti, Sailesh ; Navab, Nassir ; Katouzian, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-88f345a6a792d8b76f38a2895ae29115c3e902cb8b31d8218954d102305337d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Censoring</topic><topic>Decision Trees</topic><topic>Dimensionality reduction</topic><topic>Electronic Health Records</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medical Informatics</topic><topic>Other</topic><topic>Spectral embedding</topic><topic>Support Vector Machine</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pölsterl, Sebastian</creatorcontrib><creatorcontrib>Conjeti, Sailesh</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><creatorcontrib>Katouzian, Amin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pölsterl, Sebastian</au><au>Conjeti, Sailesh</au><au>Navab, Nassir</au><au>Katouzian, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>72</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models with built-in feature selection are preferred. • For large sample sizes, feature extraction methods performed comparably.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27664504</pmid><doi>10.1016/j.artmed.2016.07.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2016-09, Vol.72, p.1-11
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_1823456531
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Censoring
Decision Trees
Dimensionality reduction
Electronic Health Records
Feature extraction
Feature selection
Humans
Internal Medicine
Medical Informatics
Other
Spectral embedding
Support Vector Machine
Survival Analysis
title Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survival%20analysis%20for%20high-dimensional,%20heterogeneous%20medical%20data:%20Exploring%20feature%20extraction%20as%20an%20alternative%20to%20feature%20selection&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=P%C3%B6lsterl,%20Sebastian&rft.date=2016-09-01&rft.volume=72&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2016.07.004&rft_dat=%3Cproquest_cross%3E1823456531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1823456531&rft_id=info:pmid/27664504&rft_els_id=S0933365716300653&rfr_iscdi=true