Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection

Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2016-09, Vol.72, p.1-11
Hauptverfasser: Pölsterl, Sebastian, Conjeti, Sailesh, Navab, Nassir, Katouzian, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models with built-in feature selection are preferred. • For large sample sizes, feature extraction methods performed comparably.
ISSN:0933-3657
1873-2860
DOI:10.1016/j.artmed.2016.07.004