Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection
Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models wit...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2016-09, Vol.72, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights • We propose random survival forests for feature extraction for survival analysis. • We formulate two constraints on the neighborhood graph specific to survival analysis. • We implement a comparative analysis of 16 feature extraction/selection methods. • For small sample sizes, models with built-in feature selection are preferred. • For large sample sizes, feature extraction methods performed comparably. |
---|---|
ISSN: | 0933-3657 1873-2860 |
DOI: | 10.1016/j.artmed.2016.07.004 |