In Situ Observation of Hydrogen-Induced Surface Faceting for Palladium-Copper Nanocrystals at Atmospheric Pressure
Nanocrystal (NC) morphology, which decides the number of active sites and catalytic efficiency, is strongly determined by the gases involved in synthesis, treatment, and reaction. Myriad investigations have been performed to understand the morphological response to the involved gases. However, most...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2016-09, Vol.55 (40), p.12427-12430 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanocrystal (NC) morphology, which decides the number of active sites and catalytic efficiency, is strongly determined by the gases involved in synthesis, treatment, and reaction. Myriad investigations have been performed to understand the morphological response to the involved gases. However, most prior work is limited to low pressures, which is far beyond realistic conditions. A dynamic morphological evolution of palladium–copper (PdCu) NC within a nanoreactor is reported, with atmospheric pressure hydrogen at the atomic scale. In situ transmission electron microscopy (TEM) videos reveal that spherical PdCu particles transform into truncated cubes at high hydrogen pressure. First principles calculations demonstrate that the surface energies decline with hydrogen pressure, with a new order of γH‐001 |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201605956 |