Synthesis of NBN-Type Zigzag-Edged Polycyclic Aromatic Hydrocarbons: 1,9-Diaza-9a-boraphenalene as a Structural Motif

A novel class of dibenzo-fused 1,9-diaza-9a-boraphenalenes featuring zigzag edges with a nitrogen–boron–nitrogen bonding pattern named NBN-dibenzophenalenes (NBN-DBPs) has been synthesized. Alternating nitrogen and boron atoms impart high chemical stability to these zigzag-edged polycyclic aromatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-09, Vol.138 (36), p.11606-11615
Hauptverfasser: Wang, Xinyang, Zhang, Fan, Schellhammer, Karl Sebastian, Machata, Peter, Ortmann, Frank, Cuniberti, Gianaurelio, Fu, Yubin, Hunger, Jens, Tang, Ruizhi, Popov, Alexey A, Berger, Reinhard, Müllen, Klaus, Feng, Xinliang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel class of dibenzo-fused 1,9-diaza-9a-boraphenalenes featuring zigzag edges with a nitrogen–boron–nitrogen bonding pattern named NBN-dibenzophenalenes (NBN-DBPs) has been synthesized. Alternating nitrogen and boron atoms impart high chemical stability to these zigzag-edged polycyclic aromatic hydrocarbons (PAHs), and this motif even allows for postsynthetic modifications, as demonstrated here through electrophilic bromination and subsequent palladium-catalyzed cross-coupling reactions. Upon oxidation, as a typical example, NBN-DBP 5a was nearly quantitatively converted to σ-dimer 5a-2 through an open-shell intermediate, as indicated by UV–vis–NIR absorption spectroscopy and electron paramagnetic resonance spectroscopy corroborated by spectroscopic calculations, as well as 2D NMR spectra analyses. In situ spectroelectrochemistry was used to confirm the formation process of the dimer radical cation 5a-2 •+. Finally, the developed new synthetic strategy could also be applied to obtain π-extended NBN-dibenzoheptazethrene (NBN-DBHZ), representing an efficient pathway toward NBN-doped zigzag-edged graphene nanoribbons.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b04445