Fluctuation dissipation in a general circulation model
This paper considers the climate response to step function changes in the solar constant in two versions of a general circulation model with simplified geography. The NCAR CCM0 model is applied to an all-land planet with no topography (Terra Blanda). In one version there is moisture in the air (as w...
Gespeichert in:
Veröffentlicht in: | Climate Dynamics 1993-07, Vol.8 (6), p.259-264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the climate response to step function changes in the solar constant in two versions of a general circulation model with simplified geography. The NCAR CCM0 model is applied to an all-land planet with no topography (Terra Blanda). In one version there is moisture in the air (as well as self-generated clouds) as evaporated from an ideal surface at a fixed 80% of saturation. In the other version there is no moisture in the atmosphere. We examine the decay of natural anomalies in the large-scale temperature field in each model and compare the time dependence of the ensemble average with the average temporal behavior of the response to step function changes in the solar constant. The fluctuation-dissipation theorem of statistical mechanics makes specific predictions about the relationship between the two curves. We conduct the experiments for both versions of the model since the sensitivity is quite different for each. The theorem is found to hold reasonably well in each case. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/BF00209665 |