Status and trends of habitats of terrestrial vertebrates in relation to land management in the interior Columbia river basin
We analyzed effects of three land management alternatives on 31 terrestrial vertebrates of conservation concern within the interior Columbia river basin study area. The three alternatives were proposed in a Supplemental Draft Environmental Impact Statement (SDEIS) that was developed for lands in the...
Gespeichert in:
Veröffentlicht in: | Forest ecology and management 2001-11, Vol.153 (1), p.63-87 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyzed effects of three land management alternatives on 31 terrestrial vertebrates of conservation concern within the interior Columbia river basin study area. The three alternatives were proposed in a Supplemental Draft Environmental Impact Statement (SDEIS) that was developed for lands in the study area administered by the US Department of Agriculture (USDA) Forest Service (FS) and US Department of Interior (USDA) Bureau of Land Management (BLM). To evaluate effects of these alternatives, we developed Bayesian belief network (BBN) models, which allowed empirical and hypothesized relations to be combined in probability-based projections of conditions. We used the BBN models to project abundance and distribution of habitat to support potential populations (population outcomes) for each species across the entire study area. Population outcomes were defined in five classes, referred to as outcomes A–E. Under outcome A, populations are abundant and well distributed, with little or no likelihood of extirpation. By contrast, populations under outcome E are scarce and patchy, with a high likelihood of local or regional extirpation. Outcomes B–D represent gradients of conditions between the extremes of classes A and E. Most species (65%, or 20 of 31) were associated with outcome A historically and with outcomes D or E currently (55%, or 17 of 31). Population outcomes projected 100 years into the future were similar for all three alternatives but substantially different from historical and current outcomes. For species dependent on old-forest conditions, population outcomes typically improved one outcome class — usually from E or D to D or C — from current to the future under the alternatives. By contrast, population outcomes for rangeland species generally did not improve under the alternatives, with most species remaining in outcomes C, D, or E. Our results suggest that all three management alternatives will substantially improve conditions for most forest-associated species but provide few improvements for rangeland-associated vertebrates. Continued displacement of native vegetation by exotic plants, as facilitated by a variety of human-associated disturbances, will be an on-going challenge to the improvement of future conditions for rangeland species. |
---|---|
ISSN: | 0378-1127 1872-7042 |
DOI: | 10.1016/S0378-1127(01)00454-6 |