Relationships between tissue contaminants and defense-related characteristics of oysters ( Crassostrea virginica) from five Florida bays

Evidence linking bivalve defense responses with pollutant exposure is increasing. Contaminant effects on immune or defense responses could influence the ability of an organism to resist infectious disease. This study explored relationships between xenobiotic chemicals accumulated in oyster ( Crassos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquatic toxicology 2001-11, Vol.55 (3), p.203-222
Hauptverfasser: Oliver, Leah M, Fisher, William S, Winstead, James T, Hemmer, Becky L, Long, Edward R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence linking bivalve defense responses with pollutant exposure is increasing. Contaminant effects on immune or defense responses could influence the ability of an organism to resist infectious disease. This study explored relationships between xenobiotic chemicals accumulated in oyster ( Crassostrea virginica) tissue and various measures of putative oyster internal defense activities and physiological condition. Defense-related and physiological measurements were made on individual oysters collected from 22 sites at five Florida bays and pooled oyster tissue from each site was analyzed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and certain pesticides. Chemical concentrations, physiological condition, and hemocyte and hemolymph characteristics varied across bays and among sites within a bay. Within-bay comparisons showed that sites with high oyster defense-related activities often had accompanying high tissue concentrations of one or more classes of xenobiotic chemicals. Correlation analysis performed across bays demonstrated significant positive relationships between most defense-related characteristics and at least one contaminant, including various PAH, PCB and trace metal analytes. In combination with other recent studies, these results strengthen the hypothesis that certain xenobiotic chemicals may be associated with elevated oyster hemocyte activities, even though the ultimate influence on disease resistance remains unknown.
ISSN:0166-445X
1879-1514
DOI:10.1016/S0166-445X(01)00161-8