Hydrogen Peroxide Coordination to Cobalt(II) Facilitated by Second-Sphere Hydrogen Bonding

M(H2O2) adducts have been postulated as intermediates in biological and industrial processes; however, only one observable M(H2O2) adduct has been reported, where M is redox‐inactive zinc. Herein, direct solution‐phase detection of an M(H2O2) adduct with a redox‐active metal, cobalt(II), is describe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2016-09, Vol.55 (39), p.11902-11906
Hauptverfasser: Wallen, Christian M., Palatinus, Lukáš, Bacsa, John, Scarborough, Christopher C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:M(H2O2) adducts have been postulated as intermediates in biological and industrial processes; however, only one observable M(H2O2) adduct has been reported, where M is redox‐inactive zinc. Herein, direct solution‐phase detection of an M(H2O2) adduct with a redox‐active metal, cobalt(II), is described. This CoII(H2O2) compound is made observable by incorporating second‐sphere hydrogen‐bonding interactions between bound H2O2 and the supporting ligand, a trianionic trisulfonamido ligand. Thermodynamics of H2O2 binding and decay kinetics of the CoII(H2O2) species are described, as well as the reaction of this CoII(H2O2) species with Group 2 cations. Finally confirmed: The first M(H2O2) adduct with a redox‐active metal, cobalt(II), could be directly detected in solution. This CoII(H2O2) compound is made observable by incorporating second‐sphere hydrogen‐bonding interactions between bound H2O2 and the supporting ligand, a trianionic trisulfonamido ligand. The decay kinetics and binding constant of this compound are discussed.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201606561