Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys

Background: Allergic respiratory diseases are characterized by large numbers of eosinophils and their reactive products in airways and blood; these are believed to be involved in progressive airway damage and remodeling. IL-5 is the principal cytokine for eosinophil maturation, differentiation, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of allergy and clinical immunology 2001-08, Vol.108 (2), p.250-257
Hauptverfasser: Hart, Timothy K., Cook, Richard M., Zia-Amirhosseini, Parnian, Minthorn, Elisabeth, Sellers, Teresa S., Maleeff, Beverly E., Eustis, Scot, Schwartz, Lester W., Tsui, Ping, Appelbaum, Edward R., Martin, Elise C., Bugelski, Peter J., Herzyk, Danuta J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Allergic respiratory diseases are characterized by large numbers of eosinophils and their reactive products in airways and blood; these are believed to be involved in progressive airway damage and remodeling. IL-5 is the principal cytokine for eosinophil maturation, differentiation, and survival. Mepolizumab (SB-240563), a humanized monoclonal antibody (mAb) specific for human IL-5, is currently in clinical trials for treatment of asthma. Objective: The purpose of this study was to characterize the pharmacologic activity and long-term safety profile of an anti–human IL-5 mAb to support clinical trials in asthmatic patients. Methods: Naive and Ascaris suum –sensitive cynomolgus monkeys received various dose levels of mepolizumab and were monitored for acute and chronic pharmacologic and toxic responses. Results: To support preclinical safety assessment, cynomolgus monkey IL-5 was cloned, expressed, and characterized. Although monkey IL-5 differs from human IL-5 by 2 amino acids (Ala27Gly and Asn40His), mepolizumab has comparable inhibitory activity against both monkey IL-5 and human IL-5. In A suum –sensitive monkeys, single doses of mepolizumab significantly reduced blood eosinophilia, eosinophil migration into lung airways, and levels of RANTES and IL-6 in lungs for 6 weeks. However, mepolizumab did not affect acute bronchoconstrictive responses to inhaled A suum . In an IL-2–induced eosinophilia model (up to 50% blood eosinophilia), 0.5 mg/kg mepolizumab blocked eosinophilia by >80%. Single-dose and chronic (6 monthly doses) intravenous and subcutaneous toxicity studies in naive monkeys found no target organ toxicity or immunotoxicity up to 300 mg/kg. Monkeys did not generate anti-human IgG antibodies. Monthly mepolizumab doses greater than 5 mg/kg caused an 80% to 100% decrease in blood and bronchoalveolar lavage eosinophils lasting 2 months after dosing, and there was no effect on eosinophil precursors in bone marrow after 6 months of treatment. Eosinophil decreases correlated with mepolizumab plasma concentrations (half-life = 13 days). Conclusion: These studies demonstrate that chronic antagonism of IL-5 by mepolizumab in monkeys is safe and has the potential, through long-term reductions in circulating and tissue-resident eosinophils, to be beneficial therapy for chronic inflammatory respiratory diseases. (J Allergy Clin Immunol 2001;108:250-7.)
ISSN:0091-6749
1097-6825
DOI:10.1067/mai.2001.116576