Discrimination of Systolic and Diastolic Dysfunctions using Multi-Layer Perceptron in Heart Rate Variability Analysis

Abstract In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2016-09, Vol.76, p.113-119
1. Verfasser: Isler, Yalcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calculated in four different ways with optional normalization methods of heart rate and data. The nearest neighbor and the multi-layer perceptron (MLP) are used to evaluate the performances in discriminating these two groups. The results point out that using both data and heart rate normalizations enhances the classifier performance. The maximum accuracy is obtained as 96.43% with MLP classifier.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2016.06.029