Basic and aromatic residues in the C-terminal domain of PriC are involved in ssDNA and SSB binding

In bacterial organisms, the oriC-independent primosome plays an essential role in replication restart after dissociation of the replication DNA-protein complex following DNA damage. PriC is a key protein component in the oriC-independent replication restart primosome. Our previous study suggested th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biochemistry (Tokyo) 2015-06, Vol.157 (6), p.529-537
Hauptverfasser: Aramaki, Takahiko, Abe, Yoshito, Furutani, Kaori, Katayama, Tsutomu, Ueda, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In bacterial organisms, the oriC-independent primosome plays an essential role in replication restart after dissociation of the replication DNA-protein complex following DNA damage. PriC is a key protein component in the oriC-independent replication restart primosome. Our previous study suggested that PriC was divided into an N-terminal domain and a C-terminal domain, with the latter domain being the major contributor to single-stranded DNA (ssDNA) binding capacity. In this study, we prepared several PriC mutants in which basic and aromatic amino acid residues were mutated to alanine. Five of these residues, Arg107, Lys111, Phe118, Arg121 and Lys165 in the C-terminal domain, were shown to be involved in ssDNA binding. Moreover, we evaluated the binding of the PriC mutants to the ssDNA-binding protein (SSB) complex. Five residues, Phe118, Arg121, Arg129, Tyr152 and Arg155 in the C-terminal domain of PriC, were shown to be involved in SSB binding in the presence of ssDNA. On the basis of these results, we propose a structural model of the C-terminal domain of PriC and discuss how the interactions of PriC with SSB and ssDNA may contribute to the regulation of PriC-dependent replication restart.
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvv014