A biomechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation

The incidence of fractures in the trochanteric area has risen with the increasing numbers of elderly people with osteoporosis. Although dynamic hip screw fixation is the gold standard for the treatment of stable intertrochanteric femur fractures, treatment of unstable intertrochanteric femur fractur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of orthopaedics 2015-01, Vol.49 (3), p.347-351
Hauptverfasser: Ozkan, Korhan, Tuerkmen, Ismail, Sahin, Adem, Yildiz, Yavuz, Erturk, Selim, Soylemez, Mehmet Salih
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The incidence of fractures in the trochanteric area has risen with the increasing numbers of elderly people with osteoporosis. Although dynamic hip screw fixation is the gold standard for the treatment of stable intertrochanteric femur fractures, treatment of unstable intertrochanteric femur fractures still remains controversial. Intramedullary devices such as Gamma nail or proximal femoral nail and proximal anatomic femur plates are in use for the treatment of intertrochanteric femur fractures. There are still many investigations to find the optimal implant to treat these fractures with minimum complications. For this reason, we aimed to perform a biomechanical comparison of the proximal femoral nail and the locking proximal anatomic femoral plate in the treatment of unstable intertrochanteric fractures. Twenty synthetic, third generation human femur models, obtained for this purpose, were divided into two groups of 10 bones each. Femurs were provided as a standard representation of AO/Orthopedic Trauma Associationtype 31-A2 unstable fractures. Two types of implantations were inserted: the proximal femoral intramedullary nail in the first group and the locking anatomic femoral plate in the second group. Axial load was applied to the fracture models through the femoral head using a material testing machine, and the biomechanical properties of the implant types were compared. Nail and plate models were locked distally at the same level. Axial steady load with a 5 mm/m velocity was applied through the mechanical axis of femur bone models. Axial loading in the proximal femoral intramedullary nail group was 1.78-fold greater compared to the plate group. All bones that had the plate applied were fractured in the portion containing the distal locking screw. The proximal femoral intramedullary nail provides more stability and allows for earlier weight bearing than the locking plate when used for the treatment of unstable intertrochanteric fractures of the femur. Clinicians should be cautious for early weight bearing with locking plate for unstable intertrochanteric femur fractures.
ISSN:0019-5413
1998-3727
DOI:10.4103/0019-5413.156220