Ca super(2+)-Dependent Caspase Activation by Gallic Acid Derivatives

Gallic acid (GA) derivatives, 3,4-methylenedioxyphenyl 3,4,5-trihydroxybenzoate (GD-1) and S-(3,4-methylenedioxyphenyl)3,4,5-trihydroxythiobenzoate (GD-3), were previously reported to induce apoptosis in tumor cells with IC sub(50)s of 14.5 mu M and 3.9 mu M, respectively. To elucidate the mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 2001-07, Vol.24 (7), p.844-847
Hauptverfasser: Isuzugawa, Kazuto, Inoue, Makoto, Ogihara, Yukio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gallic acid (GA) derivatives, 3,4-methylenedioxyphenyl 3,4,5-trihydroxybenzoate (GD-1) and S-(3,4-methylenedioxyphenyl)3,4,5-trihydroxythiobenzoate (GD-3), were previously reported to induce apoptosis in tumor cells with IC sub(50)s of 14.5 mu M and 3.9 mu M, respectively. To elucidate the mechanism by which these gallic acid derivatives (GDs) induce apoptosis, we studied whether GD-1 and GD-3 can activate caspases. When promyelocytic leukemia HL-60RG cells were treated with GD-1 and GD-3, poly(ADP-ribose)polymerase (PARP), a substrate of caspase-3, was cleaved into 85 kDa of degradative product with increasing incubation time. GA also activated PARP cleavage, which was inhibited by catalase, N-acetyl-L-cysteine (NAC), and intracellular Ca super(2+) chelator 1,2-bis(2-aminophenoxyethane)-N,N,N,N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), in addition to a caspase inhibitor, Z-VAD-FMK. Its inhibitory pattern was identical with that of hypoxanthine/xanthine oxidase. On the other hand, GD-1- and GD-3-induced PARP cleavage was not suppressed by catalase or NAC, but by BAPTA-AM. This suggested that the GD-elicited signaling pathway is different from GA's. Taken together, GDs activated caspase-3 following intracellular Ca super(2+) elevation independent of reactive oxygen species. Thus, it became evident that the signaling pathway leading to apoptosis was regulated by GDs in a different manner from GA.
ISSN:0918-6158