Interacting multi-scale wind systems within an Alpine Basin, Lake Tekapo, New Zealand

The wind regime of the Lake Tekapo Basin is examined with reference to the interaction of multi-scale local, regional and synoptic circulations. Analysis of the historical wind direction record from Mt John identifies airflow from three principal directions to most frequently affect the study area....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteorology and atmospheric physics 1996, Vol.58 (1-4), p.165-177
Hauptverfasser: MCGOWAN, H. A, STURMAN, A. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The wind regime of the Lake Tekapo Basin is examined with reference to the interaction of multi-scale local, regional and synoptic circulations. Analysis of the historical wind direction record from Mt John identifies airflow from three principal directions to most frequently affect the study area. Both seasonal and diurnal trends in the frequency of each directional category are identified, which reflect the influence of local thermal forcings and seasonal changes in synoptic circulation on the Lake Tekapo windfield. Meteorological observations from a network of automatic weather stations and anemographs within the study area identified Lake Tekapo to generate its own circulation system, a lake/land breeze. This combines with the larger scale valley wind, which during ideal conditions continues after sunset in the upper reaches of the lake catchment. During light to moderate foehn northwesterly conditions, the combined lake breeze/valley wind system remains decoupled from the prevailing synoptic airstream. Towards evening when local thermal circulations weakened, a channelised foehn airstream often becomes dominant over the entire field area. Observations made during this investigation have a number of applied implications with respect to air pollution dispersion modelling and forecasting within alpine lake basins.
ISSN:0177-7971
1436-5065
DOI:10.1007/BF01027563