Cell Types Involved in Allogeneic Contact Reactions of the Solitary Ascidian, Halocynthia roretzi

The blood cells of a solitary ascidian, Halocynthia roretzi exhibit the allogeneic cellular reaction in vitro denoted as the “contact reaction”(Fuke, 1980). Nine cell types have been recognized in the blood and body fluid of H. roretzi (Fuke and Fukumoto, 1993). In the present study, the precise rol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zoological Science 2001-03, Vol.18 (2), p.195-205
1. Verfasser: Fuke, Masako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The blood cells of a solitary ascidian, Halocynthia roretzi exhibit the allogeneic cellular reaction in vitro denoted as the “contact reaction”(Fuke, 1980). Nine cell types have been recognized in the blood and body fluid of H. roretzi (Fuke and Fukumoto, 1993). In the present study, the precise role of each cell type in allogeneic reactions is investigated in vitro. The vacuolated cells show devacuolation after contact with almost all other cell types from different reactive animals. These cells include hyaline amoebocytes, granular amoebocytes, macrogranular cells, small amoebocytes and giant cells (large basophilic cells), as well as vacuolated cells. The hyaline amoebocytes and small amoebocytes, which belong to the phagocyte series exhibit contact reactions with the cells of phagocyte series from other specimens of H. roretzi. They also show a contact reaction when in contact with granular amoebocytes. Therefore, almost all cell types have the materials responsible for individuality on their cell surface and can directly show the allogeneic cellular reactivity when they contact each other. To determine whether the contact reaction is involved in cell death, the loss of plasma membrane integrity was examined using fluorescent dyes. The number of cells showing uptake of ethidium bromide increased immediately after mixing of allogeneic cells. Almost the same cell types as those showing allogeneic behavior by light microscopy, as described above, exhibited loss of cell membrane integrity. These results are discussed in the context of immune systems in invertebrates and vertebrates.
ISSN:0289-0003
DOI:10.2108/zsj.18.195